A Prudent Logic of Partial Functions as a Unifying Framework of Many Sorted Logics

Đorđe Marković

KU Leuven, Department of Computer Science, Leuven, Belgium

February 13, 2025 CapeKR 2025, Cape Town, South Africa

- Reduction results
- Order Sorted Logic and Inductive Data Types
- Conclusion

- Many Sorted Logic and Partial Functions Logic
- Reduction results
- Order Sorted Logic and Inductive Data Types
- Conclusion

- Many Sorted Logic and Partial Functions Logic
- Reduction results
- Order Sorted Logic and Inductive Data Types
- Conclusion

- Many Sorted Logic and Partial Functions Logic
- Reduction results
- Order Sorted Logic and Inductive Data Types
- Conclusion

Many Sorted Logic – FO(TY):

- Reasoning about different sorts of objects.
- E.g., Mortality applies only to living beings.
- Hierarchy of sorts (E.g., Animals :> (Cats, Dogs, ...)).
- Syntactical decidability of well-typed formulae.

Partial Functions Logic – FO(PF):

- E.g., Subtraction in Natural numbers (i.e., 5 10).
- E.g., Division in Natural and Real numbers (i.e., 5/0).
- E.g., The present king of France is bald.
- E.g., Next element of a list.

Many Sorted Logic - FO(TY):

- Reasoning about different sorts of objects.
- E.g., Mortality applies only to living beings.
- Hierarchy of sorts (E.g., Animals :> (Cats, Dogs, ...)).
- Syntactical decidability of well-typed formulae.

Partial Functions Logic – FO(PF):

- E.g., Subtraction in Natural numbers (i.e., 5 10).
- E.g., Division in Natural and Real numbers (i.e., 5/0).
- E.g., The present king of France is bald.
- E.g., Next element of a list.

Many Sorted Logic - FO(TY):

- Reasoning about different sorts of objects.
- E.g., Mortality applies only to living beings.
- Hierarchy of sorts (E.g., Animals :> (Cats, Dogs, ...)).
- Syntactical decidability of well-typed formulae.

Partial Functions Logic – FO(PF):

- E.g., Subtraction in Natural numbers (i.e., 5 10).
- E.g., Division in Natural and Real numbers (i.e., 5/0).
- E.g., The present king of France is bald.
- E.g., Next element of a list.

Many Sorted Logic - FO(TY):

- Reasoning about different sorts of objects.
- E.g., Mortality applies only to living beings.
- Hierarchy of sorts (E.g., Animals :> (Cats, Dogs, ...)).
- Syntactical decidability of well-typed formulae.

Partial Functions Logic – FO(PF):

- E.g., Subtraction in Natural numbers (i.e., 5 10).
- E.g., Division in Natural and Real numbers (i.e., 5/0).
- E.g., The present king of France is bald.
- E.g., Next element of a list.

Many Sorted Logic - FO(TY):

- Reasoning about different sorts of objects.
- E.g., Mortality applies only to living beings.
- Hierarchy of sorts (E.g., Animals :> (Cats, Dogs, ...)).
- Syntactical decidability of well-typed formulae.
- Partial Functions Logic FO(PF):
 - E.g., Subtraction in Natural numbers (i.e., 5 10).
 - E.g., Division in Natural and Real numbers (i.e., 5/0).
 - E.g., The present king of France is bald.
 - E.g., Next element of a list.

Many Sorted Logic - FO(TY):

- Reasoning about different sorts of objects.
- E.g., Mortality applies only to living beings.
- Hierarchy of sorts (E.g., Animals :> (Cats, Dogs, ...)).
- Syntactical decidability of well-typed formulae.
- Partial Functions Logic FO(PF):
 - E.g., Subtraction in Natural numbers (i.e., 5 10).
 - E.g., Division in Natural and Real numbers (i.e., 5/0).
 - E.g., The present king of France is bald.
 - E.g., Next element of a list.

Many Sorted Logic - FO(TY):

- Reasoning about different sorts of objects.
- E.g., Mortality applies only to living beings.
- Hierarchy of sorts (E.g., Animals :> (Cats, Dogs, ...)).
- Syntactical decidability of well-typed formulae.
- Partial Functions Logic FO(PF):
 - E.g., Subtraction in Natural numbers (i.e., 5 10).
 - E.g., Division in Natural and Real numbers (i.e., 5/0).
 - E.g., The present king of France is bald.
 - E.g., Next element of a list.

Many Sorted Logic - FO(TY):

- Reasoning about different sorts of objects.
- E.g., Mortality applies only to living beings.
- Hierarchy of sorts (E.g., Animals :> (Cats, Dogs, ...)).
- Syntactical decidability of well-typed formulae.
- Partial Functions Logic FO(PF):
 - E.g., Subtraction in Natural numbers (i.e., 5 10).
 - E.g., Division in Natural and Real numbers (i.e., 5/0).
 - E.g., The present king of France is bald.
 - E.g., Next element of a list.

On denoting. Bertrand Russell. Mind, 1905

Đorđe Marković (KU Leuven)

Many Sorted Logic - FO(TY):

- Reasoning about different sorts of objects.
- E.g., Mortality applies only to living beings.
- Hierarchy of sorts (E.g., Animals :> (Cats, Dogs, ...)).
- Syntactical decidability of well-typed formulae.
- Partial Functions Logic FO(PF):
 - E.g., Subtraction in Natural numbers (i.e., 5 10).
 - E.g., Division in Natural and Real numbers (i.e., 5/0).
 - E.g., The present king of France is bald.
 - E.g., Next element of a list.

On denoting. Bertrand Russell. Mind, 1905

Đorđe Marković (KU Leuven)

FO(TY):	FO(PF):
$\tau := x$ $:= f(\tau_1, \ldots, \tau_n)$	$\tau := x$:= $f(\tau_1, \ldots, \tau_n)$
$\phi := p(\tau_1, \dots, \tau_n)$ $:= \neg \phi_1$ $:= \phi_1 \lor \phi_2$ $:= \exists x[\mathbb{T}] : \phi_1$	$egin{aligned} \phi &:= p(au_1,\ldots, au_n)\ &:= eg \phi_1\ &:= \phi_1 \lor \phi_2\ &:= \exists x : \phi_1\ &:= ext{if}\ \phi_1\ ext{then}\ \phi_2\ ext{else}\ \phi_3\ ext{fi} \end{aligned}$

FO(TY):	FO(PF):
$\tau := x$ $:= f(\tau_1, \ldots, \tau_n)$	$\tau := x$:= $f(\tau_1, \ldots, \tau_n)$
$\phi := p(\tau_1, \dots, \tau_n)$ $:= \neg \phi_1$ $:= \phi_1 \lor \phi_2$ $:= \exists x[\mathbb{T}] : \phi_1$	$egin{aligned} \phi &:= p(au_1,\ldots, au_n)\ &:= eg \phi_1\ &:= \phi_1 \lor \phi_2\ &:= \exists x : \phi_1\ &:= ext{if}\ \phi_1\ ext{then}\ \phi_2\ ext{else}\ \phi_3\ ext{fi} \end{aligned}$

FO(TY):	FO(PF):
$\tau := x$ $:= f(\tau_1, \ldots, \tau_n)$	au := x $:= f(au_1, \dots, au_n)$
$\phi := p(\tau_1, \dots, \tau_n)$ $:= \neg \phi_1$ $:= \phi_1 \lor \phi_2$ $:= \exists x[\mathbb{T}] : \phi_1$	$\phi := p(\tau_1, \dots, \tau_n)$ $:= \neg \phi_1$ $:= \phi_1 \lor \phi_2$ $:= \exists x : \phi_1$ $:= \text{if } \phi_1 \text{ then } \phi_2 \text{ else } \phi_3 \text{ fi}$

FO(TY):	FO(PF):
$\tau := x$ $:= f(\tau_1, \ldots, \tau_n)$	au := x $:= f(au_1, \dots, au_n)$
$\phi := p(\tau_1, \dots, \tau_n)$ $:= \neg \phi_1$ $:= \phi_1 \lor \phi_2$ $:= \exists x[\mathbb{T}] : \phi_1$	$\phi := p(\tau_1, \dots, \tau_n)$ $:= \neg \phi_1$ $:= \phi_1 \lor \phi_2$ $:= \exists x : \phi_1$ $:= \text{if } \phi_1 \text{ then } \phi_2 \text{ else } \phi_3 \text{ fi}$

- Typical for sorted logic is type checking inference (is formula well-typed or not).
- What it means for a formula to be well typed?
- Types of terms are matching the type of argument where they are applied.
- This eliminates formulae that are trivially tautologies or contradictions.
- Helps KB engineers in reducing logical errors.

- Typical for sorted logic is type checking inference (is formula well-typed or not).
- What it means for a formula to be well typed?
- Types of terms are matching the type of argument where they are applied.
- This eliminates formulae that are trivially tautologies or contradictions.
- Helps KB engineers in reducing logical errors.

- Typical for sorted logic is type checking inference (is formula well-typed or not).
- What it means for a formula to be well typed?
- Types of terms are matching the type of argument where they are applied.
- This eliminates formulae that are trivially tautologies or contradictions.
- Helps KB engineers in reducing logical errors.

- Typical for sorted logic is type checking inference (is formula well-typed or not).
- What it means for a formula to be well typed?
- Types of terms are matching the type of argument where they are applied.
- This eliminates formulae that are trivially tautologies or contradictions.
- Helps KB engineers in reducing logical errors.

- Typical for sorted logic is type checking inference (is formula well-typed or not).
- What it means for a formula to be well typed?
- Types of terms are matching the type of argument where they are applied.
- This eliminates formulae that are trivially tautologies or contradictions.
- Helps KB engineers in reducing logical errors.

FO(TY) Well typed formulae

Vocabulary:

type Cat type Dog type Human type Rock

 $\begin{array}{l} \textit{Garfield}:() \rightarrow \textit{Cat}\\ \textit{Meows}:\textit{Cat} \rightarrow \mathbb{B}\\ \textit{Barks}:\textit{Dog} \rightarrow \mathbb{B}\\ \textit{Mortal}:\textit{Human} \rightarrow \mathbb{B} \end{array}$

Is formula well typed:

Meows(Garfield) Barks(Garfield) ∀r[Rock] : Mortal(r) ∀h[Human] : Mortal(h)

FO(TY) Well typed formulae

$$\frac{\overline{\omega \vdash \mathsf{t}:\mathbb{B}} (T\text{-}tr)}{\overline{\omega \vdash \mathsf{t}:\mathbb{B}} (T\text{-}tr)} \frac{\overline{\omega \vdash \mathsf{f}:\mathbb{B}} (T\text{-}fa)}{\overline{\omega \vdash \mathsf{f}:\mathbb{B}} (T\text{-}fa)} \frac{\frac{\omega \vdash \phi:\mathbb{B}}{\omega \vdash \neg \phi:\mathbb{B}} (T\text{-}neg)}{\overline{\omega \vdash (\varphi \lor \varphi):\mathbb{B}} (T\text{-}or)} \frac{\omega \cup \{x:\mathbb{T}\} \vdash \phi:\mathbb{B}}{\overline{\omega \vdash (\exists x}[\mathbb{T}]:\phi):\mathbb{B}} (T\text{-}ex)}{\overline{\omega \vdash (\exists x}[\mathbb{T}]:\phi):\mathbb{B}} (T\text{-}ex)}$$
$$\frac{x:\mathbb{T}\in\omega}{\overline{\omega \vdash x:\mathbb{T}}} (T\text{-}v) \frac{\underline{s}_{\Sigma}(\sigma) = (\mathbb{T}_{1},\ldots,\mathbb{T}_{n},\mathbb{T})}{\overline{\omega \vdash \sigma(t_{1},\ldots,t_{n}):\mathbb{T}}} \frac{\omega \vdash t_{i}:\mathbb{T}_{i}}{(T\text{-}a)}$$

FO(TY) Well typed formulae

Vocabulary:

type Cat type Dog type Human Well typed formula: Ill typed formula: type Rock Meows(Garfield) Barks(Garfield) $\forall h[Human] : Mortal(h)$ $\forall r[Rock] : Mortal(r)$ Garfield : () \rightarrow Cat *Meows* : *Cat* \rightarrow \mathbb{B} *Barks* : $Dog \rightarrow \mathbb{B}$ Mortal : Human $\rightarrow \mathbb{B}$

- Typical for partial functions logic is well definedness checking inference (does formula evaluate to true or false in all structures).
- However, this is in general undecidable!
- We introduce notion of well guarded formula.
- Informally, formula is well guarded if all partial function terms are constrained with their domain.
- Well guarded formulae are well defined!

A practical approach to partial functions in CVC lite. Berezin, S., Barrett, C., Shikanian, I., Chechik, M., Gurfinkel, A., Dill, D.L. Electronic Notes in Theoretical Computer Science, 2005 *Towards Systematic Treatment of Partial Functions in Knowledge Representation*. Djordje Markovic, Maurice Bruynooghe, Marc Denecker. Logics in Artificial Intelligence JELIA 2023

Đorđe Marković (KU Leuven)

- Typical for partial functions logic is well definedness checking inference (does formula evaluate to true or false in all structures).
- However, this is in general undecidable!
- We introduce notion of well guarded formula.
- Informally, formula is well guarded if all partial function terms are constrained with their domain.
- Well guarded formulae are well defined!

A practical approach to partial functions in CVC lite. Berezin, S., Barrett, C., Shikanian, I., Chechik, M., Gurfinkel, A., Dill, D.L. Electronic Notes in Theoretical Computer Science, 2005

Towards Systematic Treatment of Partial Functions in Knowledge Representation. Djordje Markovic, Maurice Bruynooghe, Marc Denecker. Logics in Artificial Intelligence JELIA 2023

Đorđe Marković (KU Leuven)

- Typical for partial functions logic is well definedness checking inference (does formula evaluate to true or false in all structures).
- However, this is in general undecidable!
- We introduce notion of well guarded formula.
- Informally, formula is well guarded if all partial function terms are constrained with their domain.
- Well guarded formulae are well defined!

A practical approach to partial functions in CVC lite. Berezin, S., Barrett, C., Shikanian, I., Chechik, M., Gurfinkel, A., Dill, D.L. Electronic Notes in Theoretical Computer Science, 2005 *Towards Systematic Treatment of Partial Functions in Knowledge Representation.* Djordje Markovic, Maurice Bruynooghe, Marc Denecker. Logics in Artificial Intelligence JELIA 2023

Đorđe Marković (KU Leuven)

- Typical for partial functions logic is well definedness checking inference (does formula evaluate to true or false in all structures).
- However, this is in general undecidable!
- We introduce notion of well guarded formula.
- Informally, formula is well guarded if all partial function terms are constrained with their domain.
- Well guarded formulae are well defined!

A practical approach to partial functions in CVC lite. Berezin, S., Barrett, C., Shikanian, I., Chechik, M., Gurfinkel, A., Dill, D.L. Electronic Notes in Theoretical Computer Science, 2005 *Towards Systematic Treatment of Partial Functions in Knowledge Representation.* Djordje Markovic, Maurice Bruynooghe, Marc Denecker. Logics in Artificial Intelligence JELIA 2023

Đorđe Marković (KU Leuven)

- Typical for partial functions logic is well definedness checking inference (does formula evaluate to true or false in all structures).
- However, this is in general undecidable!
- We introduce notion of well guarded formula.
- Informally, formula is well guarded if all partial function terms are constrained with their domain.
- Well guarded formulae are well defined!

A practical approach to partial functions in CVC lite. Berezin, S., Barrett, C., Shikanian, I., Chechik, M., Gurfinkel, A., Dill, D.L. Electronic Notes in Theoretical Computer Science, 2005 *Towards Systematic Treatment of Partial Functions in Knowledge Representation*. Djordje Markovic, Maurice Bruynooghe, Marc Denecker. Logics in Artificial Intelligence JELIA 2023

Đorđe Marković (KU Leuven)

Is formula well guarded:

Vocabulary:

Doctor(Mother(MyPartner))

 $Doctor : \mathbb{U} \to \mathbb{B}$ $Mother : \mathbb{U} \to \mathbb{U}$ $MyPartner : () \to \mathbb{U}$

 $\delta_{Mother} : \mathbb{U} \to \mathbb{B}$ $\delta_{MyPartner} : () \to \mathbb{B}$

if $\delta_{MyPartner}()$ then Doctor(Mother(MyPartner)) else f fi

if $\delta_{MyPartner}()$ then if $\delta_{Mother}(MyPartner)$ then Doctor(Mother(MyPartner))else f fi else f fi

$$\frac{\gamma \Vdash \phi}{\gamma \Vdash \mathsf{t}} (G\text{-}\mathsf{t}r) \xrightarrow{\gamma \Vdash \mathsf{f}} (G\text{-}\mathsf{f}a) \xrightarrow{\gamma \Vdash \chi} (G\text{-}v) \xrightarrow{\gamma \Vdash \phi} (G\text{-}\mathsf{neg})$$

$$\frac{\gamma \Vdash \phi}{\gamma \Vdash (\phi \lor \varphi)} (G\text{-}\mathsf{or}) \xrightarrow{\gamma \Vdash \phi} \gamma \Vdash \phi}{\gamma \Vdash (\exists x : \phi)} (G\text{-}\mathsf{ex}) \xrightarrow{\delta_{\sigma}(\overline{t}) \in \gamma} \gamma \Vdash \overline{t}} (G\text{-}a)$$

$$\frac{\gamma \Vdash p_{1}(\overline{t}_{1}) \dots \gamma \Vdash p_{n}(\overline{t}_{n})}{\gamma \Vdash f_{n}(\overline{t}_{1}) \dots \gamma \Vdash \phi} \xrightarrow{\omega \cup \{p_{1}(\overline{t}_{1}), \dots, p_{n}(\overline{t}_{n})\} \Vdash \psi} \gamma \Vdash \chi}{\gamma \Vdash \mathsf{if}} (G\text{-}g)$$

Unguarded formulae:

Doctor(Mother(MyPartner))

Vocabulary:

 $Doctor : \mathbb{U} \to \mathbb{B}$ $Mother : \mathbb{U} \to \mathbb{U}$ $MyPartner : () \to \mathbb{U}$

 $\delta_{Mother} : \mathbb{U} \to \mathbb{B}$ $\delta_{MyPartner} : () \to \mathbb{B}$

if $\delta_{MyPartner}$ () then Doctor(Mother(MyPartner)) else f fi Well guarded formula:

> if $\delta_{MyPartner}$ () then if $\delta_{Mother}(MyPartner)$ then Doctor(Mother(MyPartner))else f fi else f fi

Vocabulary:

 $Doctor : \mathbb{U} \to \mathbb{B}$ $Mother : \mathbb{U} \to \mathbb{U}$ $MyPartner : () \to \mathbb{U}$ $\delta_{Mother} : \mathbb{U} \to \mathbb{B}$

 $\delta_{MyPartner}: () \to \mathbb{B}$

Is this theory well guarded:

 $\delta_{MyPartner}()$ $\delta_{Mother}(MyPartner)$ Doctor(Mother(MyPartner))

$$\frac{\delta_{\sigma}(\overline{t}) \subseteq \gamma, \overline{\mathcal{T}} \quad \gamma, \overline{\mathcal{T}} \Vdash \overline{t}}{\gamma, \overline{\mathcal{T}} \Vdash \sigma(\overline{t})} (G-a') \qquad \frac{\forall \overline{x} : p(\overline{r}) \land \phi \in \overline{\mathcal{T}}}{p(\overline{r}[\overline{x} \to \overline{u}]) \subseteq \gamma, \overline{\mathcal{T}}} (G-c) \qquad \frac{p(\overline{r}) \in \gamma}{p(\overline{r}) \subseteq \gamma, \overline{\mathcal{T}}} (G-c') \\
\frac{\forall \overline{x} : p_1(\overline{s}_1) \land \dots \land p_m(\overline{s}_m) \Rightarrow p(\overline{r}) \land \phi \in \overline{\mathcal{T}} \qquad p_i(\overline{s}_i)[\overline{x} \to \overline{u}] \subseteq \gamma, \overline{\mathcal{T}}}{p(\overline{r}[\overline{x} \to \overline{u}]) \subseteq \gamma, \overline{\mathcal{T}}} (G-i)$$

Vocabulary:

 $Doctor : \mathbb{U} \to \mathbb{B}$ $Mother : \mathbb{U} \not\to \mathbb{U}$ $MyPartner : () \not\to \mathbb{U}$

 $\delta_{Mother} : \mathbb{U} \to \mathbb{B}$ $\delta_{MyPartner} : () \to \mathbb{B}$

This theory is well guarded:

 $\delta_{MyPartner}()$ $\delta_{Mother}(MyPartner)$ Doctor(Mother(MyPartner))

- Many Sorted Logic and Partial Functions Logic
- Reduction results
- Order Sorted Logic and Inductive Data Types
- Conclusion

FO(TY) to FO(PF) Reduction results

• Can we define translation of FO(TY) to FO(PF) such that:

- FO(TY) theory is well typed iff its transition is well guarded?
- We can recover models of FO(TY) theory from the models of its translation to FO(PF)?
- The answer is yes!

- Can we define translation of FO(TY) to FO(PF) such that:
- FO(TY) theory is well typed iff its transition is well guarded?
- We can recover models of FO(TY) theory from the models of its translation to FO(PF)?
- The answer is yes!

- Can we define translation of FO(TY) to FO(PF) such that:
- FO(TY) theory is well typed iff its transition is well guarded?
- We can recover models of FO(TY) theory from the models of its translation to FO(PF)?
- The answer is yes!

- Can we define translation of FO(TY) to FO(PF) such that:
- FO(TY) theory is well typed iff its transition is well guarded?
- We can recover models of FO(TY) theory from the models of its translation to FO(PF)?
- The answer is yes!

FO(PF): FO(TY): type Cat $Cat : \mathbb{U} \to \mathbb{B} \qquad \{ \forall x : \delta_{Cat}(x) \quad \exists x : Cat(x) \}$ $Garfield: () \rightarrow Cat$ $Garfield: () \rightarrow \mathbb{U} \quad \{\delta_{Garfield}() \qquad \delta_{Garfield}() \Rightarrow Cat(Garfield)\}$ *Meows* : $\mathbb{U} \rightarrow \mathbb{B} \quad \{\forall x : \delta_{Meows}(x) \Leftrightarrow Cat(x)\}$ Meows \cdot Cat $\rightarrow \mathbb{R}$ Meows(Garfield) {*Meows*(*Garfield*)} $\exists c[Cat] : Meows(c)$ $\{\exists c : if Cat(c) then Meows(c) else f fi\}$

- Many Sorted Logic and Partial Functions Logic
- Reduction results
- Order Sorted Logic and Inductive Data Types
- Conclusion

Order Sorted Logic and Inductive Data Types

- Can we achieve the same results for Order Sorted Logic as for FO(TY)?
- What is Sorted Logic that corresponds to the full generality of FO(PF)?
- FO(PF) also supports inductive definitions, can we do more with them?

- Can we achieve the same results for Order Sorted Logic as for FO(TY)?
- What is Sorted Logic that corresponds to the full generality of FO(PF)?
- FO(PF) also supports inductive definitions, can we do more with them?

- Can we achieve the same results for Order Sorted Logic as for FO(TY)?
- What is Sorted Logic that corresponds to the full generality of FO(PF)?
- FO(PF) also supports inductive definitions, can we do more with them?

Vocabulary:

type Animal type Cat <: Animal type Dog <: Animal Meows : Cat $\rightarrow \mathbb{B}$ Barks : Dog $\rightarrow \mathbb{B}$ Mortal : Animal $\rightarrow \mathbb{B}$

Is formula well typed: ∃c[Cat] : Meows(c) ∃d[Dog] : Barks(c) ∀d[Dog] : Mortal(d) Vocabulary:

type Animal type Cat <: Animal type Dog <: Animal

 $\begin{array}{l} \textit{Meows}:\textit{Cat} \rightarrow \mathbb{B} \\ \textit{Barks}:\textit{Dog} \rightarrow \mathbb{B} \end{array}$

Is formula well typed:

∃a[Animal] : if Cat(a) then Meows(a) else if Dog(a) then Barks(a) else f fi fi

Inductive Data Types

Vocabulary:

type Nat where z : Nat $s : Nat \rightarrow Nat$

In FO(PF): $z: () \nrightarrow \mathbb{U}$ $s: \mathbb{U} \nrightarrow \mathbb{U}$ $Nat: \mathbb{U} \rightarrow \mathbb{B}$

 $\left\{\begin{array}{l} Nat(z).\\ \forall x: Nat(s(x)) \leftarrow Nat(x). \end{array}\right\}$

 $\delta_z()$ $\forall x : \delta_s(x) \Leftrightarrow Nat(x)$ UNA(z,s)

- Many Sorted Logic and Partial Functions Logic
- Reduction results
- Order Sorted Logic and Inductive Data Types
- Conclusion

- Partial Function Logic can serve as an underlying framework for many Sorted logics.
- Well guardedness relation provides more general well typing relation.
- Can inductive definitions provide support for inductive data types for Sorted logics?

- Partial Function Logic can serve as an underlying framework for many Sorted logics.
- Well guardedness relation provides more general well typing relation.
- Can inductive definitions provide support for inductive data types for Sorted logics?

- Partial Function Logic can serve as an underlying framework for many Sorted logics.
- Well guardedness relation provides more general well typing relation.
- Can inductive definitions provide support for inductive data types for Sorted logics?

Thank you for your attention

Typed relations/functions can be thought of as partial relations/functions on the universe, where well guarded relation generalizes the idea of well typed relation.

Đorđe Marković

markovic@djordje.rs

https://djordje.rs/