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O Introduction — KRR Paradigm




© Quick poll

How many of you are familiar with/have heard of (raise your hand {¥):
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© Quick poll

How many of you are familiar with/have heard of :

® Knowledge Representation and Reasoning Paradigm?
® Prolog, ASP, Datalog?

e LTL, CTL, ProB, Rodin? {¥
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© Quick poll

How many of you are familiar with/have heard of :

e Knowledge Representation and Reasoning Paradigm?
® Prolog, ASP, Datalog?
e |TL, CTL, ProB, Rodin?

* Using logic for modeling/solving problems? iy
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O Knowledge Representation and Reasoning Paradigm

® Domain specific knowledge
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O Knowledge Representation and Reasoning Paradigm

® Domain specific knowledge

e Different problems/tasks
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O Knowledge Representation and Reasoning Paradigm

® Domain specific knowledge
e Different problems/tasks

e Formally model the domain knowledge
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O Knowledge Representation and Reasoning Paradigm

Domain specific knowledge

Different problems/tasks

Formally model the domain knowledge

e Use reasoning engine for solving different problems with the same formalization
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O KRR Paradigm - Example

® Domain knowledge: Graph theory

Dorde Markovi¢ (KU Leuven) Ambiguities in Knowledge Representation TTU, October 21, 2024



O KRR Paradigm - Example

® Domain knowledge: Graph theory

® Problems: Graph coloring, Transitive closure, Reachability, ...
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O KRR Paradigm - Example

® Domain knowledge: Graph theory
® Problems: Graph coloring, Transitive closure, Reachability, ...

e Formal language: First-order logic?
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O KRR Paradigm - Example

Domain knowledge: Graph theory

Problems: Graph coloring, Transitive closure, Reachability, ...

Formal language: First-order logic?

® Reasoning engine: SAT/SMT solver?
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O KRR Paradigm - Example Flow

Example 1:
® We have an FO theory about graph coloring.
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O KRR Paradigm - Example Flow

Example 1:
® We have an FO theory about graph coloring.

® Problem instance: We know the Graph (nodes and edges), and the set of Colors.
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O KRR Paradigm - Example Flow

Example 1:
® We have an FO theory about graph coloring.

® Problem instance: We know the Graph (nodes and edges), and the set of Colors.

¢ Asking the solver to find a solution (i.e., assignment of colors to the nodes).
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O KRR Paradigm - Example Flow

Example 1:
® We have an FO theory about graph coloring.

® Problem instance: We know the Graph (nodes and edges), and the set of Colors.

¢ Asking the solver to find a solution (i.e., assignment of colors to the nodes).

Example 2:
® We have an FO theory about graph coloring.
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O KRR Paradigm - Example Flow

Example 1:
® We have an FO theory about graph coloring.

® Problem instance: We know the Graph (nodes and edges), and the set of Colors.

e Asking the solver to find a solution (i.e., assignment of colors to the nodes).

Example 2:
® We have an FO theory about graph coloring.

® Problem instance: We know partially the Graph (only nodes), and the set color assignment.
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O KRR Paradigm - Example Flow

Example 1:
® We have an FO theory about graph coloring.

® Problem instance: We know the Graph (nodes and edges), and the set of Colors.

e Asking the solver to find a solution (i.e., assignment of colors to the nodes).

Example 2:
® We have an FO theory about graph coloring.

® Problem instance: We know partially the Graph (only nodes), and the set color assignment.

e Asking the solver to find a possible edges of the graph.
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© Quick poll

How many of you are familiar with (raise your hand {):
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© Quick poll

How many of you are familiar with:

* First-order Logic?
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© Quick poll

How many of you are familiar with:
e First-order Logic?

* Typed First-order Logic? ¥
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© Quick poll

How many of you are familiar with:
e First-order Logic?
e Typed First-order Logic?

e Model semantics?

Ambiguities in Knowledge Representation

Dorde Markovi¢ (KU Leuven)

TTU, October 21, 2024



W |ntermezzo — First-order Logic




WP |ntermezzo — First-order Logic — Syntax

Term t is defined as:

® Variable: x

e Compound: f(t,.... 1)
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WP |ntermezzo — First-order Logic — Syntax

Term t is defined as:

® Variable: x

e Compound: f(t,.... 1)

)

An FO formula is defined as:

e Atom: P(ty,...,t,)

Negation: —¢

Disjunction: ¢1 V ¢»

Existential quantification: Jx : ®
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WP |ntermezzo — First-order Logic — Example

e Natural language:

Every node in a graph has at least one outgoing edge.
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WP |ntermezzo — First-order Logic — Example

e Natural language:

Every node in a graph has at least one outgoing edge.

e |n first-order logic:

Vx : Node(x) = Jy : Node(y) A Edge(x, y)
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WP |ntermezzo — First-order Logic — Model Semantics

[Satisfaction or truth relation] Let ¢ be a formula interpreted by 2. We define that 2
satisfies ¢ (denoted 2( |= ¢) by an inductive case analysis on the structure of ¢:

© Ak P(ty,... t,)if (£f,...,t%) € P;

® = (—a) if AF «; (that is, A does not satisfy «);

e A= (aVvp)ifAEaor =S (or both);

® 2 = (Ix : o) if there exists d € D* such that 2[x : d] |= o;

Here D is denoting the domain od discourse, s* the value of symbol s in the structure 2, and
A[x : d] extended structure with value d for symbol x.
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WP |ntermezzo — First-order Logic — Model Semantics

[Satisfaction or truth relation] Let ¢ be a formula interpreted by 2(. We define that 2
satisfies ¢ (denoted 2( |= ¢) by an inductive case analysis on the structure of ¢:

© Ak P(ty,... t,)if (£f,...,t%) € P;

® A = (—a) if AF «; (that is, A does not satisfy «);

e A= (aVvp)if A E aor k=S (or both);

® 2 = (Ix : o) if there exists d € D* such that 2[x : d] |= o;

Here D is denoting the domain od discourse, s* the value of symbol s in the structure 2, and
A[x : d] extended structure with value d for symbol x.
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WP Intermezzo — First-order Logic and inductive definitions

Extending logic with inductive definitions:

{ Vx,y: T(x,y) < E(x,y). }
Vx,y,z: T(x,z) < T(x,y) A\ T(y, 2).

A logic of nonmonotone inductive definitions. Marc Denecker, Eugenia Ternovska. ACM Transactions on
Computational Logic, 2008.
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WP Intermezzo — First-order Logic and inductive definitions

Extending logic with inductive definitions:

{ Vx,y: T(x,y) < E(x,y). }
Vx,y,z: T(x,z) « T(x,y) A T(y, z).

A logic of nonmonotone inductive definitions. Marc Denecker, Eugenia Ternovska. ACM Transactions on
Computational Logic, 2008.
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Extending logic with inductive definitions:

{ Vx,y @ T(x,y) < E(x,y). }
Vx,y,z: T(x,z) « T(x,y) A\ T(y, 2).

A logic of nonmonotone inductive definitions. Marc Denecker, Eugenia Ternovska. ACM Transactions on
Computational Logic, 2008.
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WP Intermezzo — First-order Logic and inductive definitions

Extending logic with inductive definitions:

{ Vx,y: T(x,y) + E(x,y). }
Vx,y,z: T(x,z) < T(x,y) N\ T(y,2).

A logic of nonmonotone inductive definitions. Marc Denecker, Eugenia Ternovska. ACM Transactions on
Computational Logic, 2008.
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WP Intermezzo — First-order Logic and inductive definitions

Extending logic with inductive definitions:

{ Vx,y: T(x,y) < E(x,y). }
Vx,y,z: T(x,z) < T(x,y) A T(y, z).

Well-founded semantics.

A logic of nonmonotone inductive definitions. Marc Denecker, Eugenia Ternovska. ACM Transactions on
Computational Logic, 2008.
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WP Intermezzo — First-order Logic and inductive definitions

Extending logic with inductive definitions:

{ Vx,y: T(x,y) < E(x,y). }
Vx,y,z: T(x,z) < T(x,y) A T(y, z).

Well-founded semantics.
Easy to embed in the model semantics.

A logic of nonmonotone inductive definitions. Marc Denecker, Eugenia Ternovska. ACM Transactions on
Computational Logic, 2008.
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WP |ntermezzo — Example from ICLP'24 Competition

xt — 7 (ol x1 — 0 (ol
—L g2 &3 1 g2 g3
gl 5 |02 | o |03 gl 1 |02 | 1 |03
X2 —————— gl x2 ———— g4
x3 ? — o4 x3 1t o4
(a) A Boolean circuit with four gates (b) The unique solution

Solving the challenge with the IDP3 system [Demo].

ICLP’24 Programming Contest materials.
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WP |ntermezzo — Example from ICLP'24 Competition

https://idp.cs.kuleuven.be/idp/

Predicate Logic as a Modelling Language: The IDP System. Broes De Cat, Bart Bogaerts, Maurice
Bruynooghe, Gerda Janssens, Marc Denecker. Declarative Logic Programming, 2018.
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https://idp.cs.kuleuven.be/idp/

? Ambiguities in Knowledge Representation

Partial functions
Decision modeling

Order-sorted Intensional logic
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== Partial functions




== Partial functions

Some examples:
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== Partial functions

Some examples:

® Subtraction on Natural numbers (i.e., 5 — 10)
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== Partial functions

Some examples:

® Subtraction on Natural numbers (i.e., 5 — 10)

e Division in Natural and Real numbers (i.e., 5/0)
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== Partial functions

Some examples:

® Subtraction on Natural numbers (i.e., 5 — 10)
e Division in Natural and Real numbers (i.e., 5/0)

e The present king of France is bald (France has no king)
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== Partial functions

Some examples:

Subtraction on Natural numbers (i.e., 5 — 10)

Division in Natural and Real numbers (i.e., 5/0)

The present king of France is bald (France has no king)

Next element of a list.
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== Partial functions — Analysis

e What is the issue with:

The present king of France is bald.

On denoting. Bertrand Russell. Mind, 1905
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== Partial functions — Analysis

e What is the issue with:

The present king of France is bald.

e Who thinks the statement it is true?

On denoting. Bertrand Russell. Mind, 1905
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== Partial functions — Analysis

e What is the issue with:

The present king of France is bald.

® Who thinks the statement it is true?
e Who thinks the statement it is false? ¥

On denoting. Bertrand Russell. Mind, 1905
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== Partial functions — Analysis

What is the issue with:

The present king of France is bald.

Who thinks the statement it is true?

Who thinks the statement it is false?

Who thinks the statement it is neither true or false? ¥

On denoting. Bertrand Russell. Mind, 1905
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== Partial functions — Analysis

® What is the issue with:

The present king of France is bald.

e |f the statement is false, what about:

The present king of France is not bald.

On denoting. Bertrand Russell. Mind, 1905
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== Partial functions — Analysis

® What is the issue with:

The present king of France is bald.

e |f the statement is false, what about:

The present king of France is not bald.

If it is false, the law of excluded middle fails!

On denoting. Bertrand Russell. Mind, 1905

Dorde Markovi¢ (KU Leuven) Ambiguities in Knowledge Representation

TTU, October 21, 2024



== Partial functions — Analysis

® What is the issue with:

The present king of France is bald.

e |f the statement is false, what about:
The present king of France is not bald.
If it is false, the law of excluded middle fails!

e If the statement is undefined, (philosophically) it has no meaning!

On denoting. Bertrand Russell. Mind, 1905
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== Partial functions — Analysis

® What is the issue with:

The present king of France is bald.

e |f the statement is false, what about:
The present king of France is not bald.
If it is false, the law of excluded middle fails!

e If the statement is undefined, (philosophically) it has no meaning!
But the sentence obviously has a meaning!

On denoting. Bertrand Russell. Mind, 1905
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== Partial functions — Analysis

How about this statement:

The wife of the present king of France is the queen of France.

Is it true of false (or neither)?
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== Partial functions — Analysis

Let's give it another try:

The present king of France is bald.

So far we concluded: The sentence is not false nor true, but it has a meaning.
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== Partial functions — Analysis

Let's give it another try:

The present king of France is bald.

So far we concluded: The sentence is not false nor true, but it has a meaning.
e According to Russell the sentence means:

There exist exactly one person that is the present king of France and that person is bald.
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== Partial functions — Analysis

Let's give it another try:

The present king of France is bald.

So far we concluded: The sentence is not false nor true, but it has a meaning.
e According to Russell the sentence means:

There exist exactly one person that is the present king of France and that person is bald.

® Alternative?

If a person is the present king of France then that person is bald.
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== Partial functions — Analysis

Let's give it another try:

The present king of France is bald.

So far we concluded: The sentence is not false nor true, but it has a meaning.
e According to Russell the sentence means:

There exist exactly one person that is the present king of France and that person is bald.

e Alternative?
If a person is the present king of France then that person is bald.

Conclusion?: The sentence is ambiguous, and interpretation depends on the context.

Dorde Markovi¢ (KU Leuven) Ambiguities in Knowledge Representation TTU, October 21, 2024



= Partial functions and Knowledge Representation

How to treat partial functions in Knowledge Representation:
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= Partial functions and Knowledge Representation

How to treat partial functions in Knowledge Representation:

® There is no space for ambiguities in Knowledge Representation.
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= Partial functions and Knowledge Representation

How to treat partial functions in Knowledge Representation:

® There is no space for ambiguities in Knowledge Representation.

* A good KR language should eliminate ambiguities by design (opposite of the natural
language).
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= Partial functions and Knowledge Representation

How to treat partial functions in Knowledge Representation:

® There is no space for ambiguities in Knowledge Representation.

* A good KR language should eliminate ambiguities by design (opposite of the natural
language).

e This should be decidable property of the language.
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= Partial functions and Knowledge Representation

How to treat partial functions in Knowledge Representation:

There is no space for ambiguities in Knowledge Representation.

A good KR language should eliminate ambiguities by design (opposite of the natural
language).

This should be decidable property of the language.

e We propose the solution: Guarded Partial Function Logic
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© Guarded Partial Function Logic

Basic guards:
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© Guarded Partial Function Logic

Basic guards:

e Each function symbol f is paired with domain predicate 0.
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© Guarded Partial Function Logic

Basic guards:

e Each function symbol f is paired with domain predicate 0.

® [f(tr,...,tn)]" is defined iff [0¢(t1,...,t,)]" is true.
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© Guarded Partial Function Logic

Basic guards:
e Each function symbol f is paired with domain predicate 0.
® [f(tr,...,tn)]" is defined iff [0¢(t1,...,t,)]" is true.

¢ Conditional guards:
if 0¢(t1,...,t,) then ¢ else 1) fi
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© Guarded Partial Function Logic

Basic guards:

e Each function symbol f is paired with domain predicate 0.

® [f(tr,...,tn)]" is defined iff [0¢(t1,...,t,)]" is true.
¢ Conditional guards:

if 0¢(t1,...,t,) then ¢ else 1) fi
[ ]

In sub-formula ¢ term f(t1,...,t,) is guarded.
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© Guarded Partial Function Logic

Basic guards:

e Each function symbol f is paired with domain predicate 0.

® [f(tr,...,tn)]" is defined iff [0¢(t1,...,t,)]" is true.
¢ Conditional guards:
if 0¢(t1,...,t,) then ¢ else 1) fi
® In sub-formula ¢ term f(t1,...,t,) is guarded.
® However, terms t1,...,t, are not!
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© Guarded Partial Function Logic — Example

Let the sentence The present king of France is bald be modeled as:

Bald(KoF)
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© Guarded Partial Function Logic — Example

Let the sentence The present king of France is bald be modeled as:
Bald(KoF)

The guarded versions of this sentence:

¢ King of France exist and he is bald:

if dkor() then Bald(KoF) else false fi
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© Guarded Partial Function Logic — Example

Let the sentence The present king of France is bald be modeled as:
Bald(KoF)

The guarded versions of this sentence:

¢ King of France exist and he is bald:
if dkor() then Bald(KoF) else false fi
® If the king of France exist he is bald:

if dkor() then Bald(KoF) else true fi
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© Guarded Partial Function Logic — Example

Let the sentence The present king of France is bald be modeled as:
Bald(KoF)

The guarded versions of this sentence:

¢ King of France exist and he is bald:
if 0y () then Bald(KoF) else false fi
® If the king of France exist he is bald:

if dkor() then Bald(KoF) else true fi
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© Guarded Partial Function Logic — Example

Let the sentence The present king of France is bald be modeled as:
Bald(KoF)

The guarded versions of this sentence:

¢ King of France exist and he is bald:
if 0y () then Bald(KoF) else false fi
® If the king of France exist he is bald:

if 0sor() then Bald(KoF) else true fi
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© Guarded Partial Function Logic

Guarding is not easy!
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© Guarded Partial Function Logic

Guarding is not easy!

¢ Consider the following example:
My partner’'s mother is a doctor.
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© Guarded Partial Function Logic

Guarding is not easy!

¢ Consider the following example:

My partner’'s mother is a doctor.

e |n first-order logic:
Doctor(mother(mp))
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© Guarded Partial Function Logic

Guarding is not easy!
¢ Consider the following example:
My partner’s mother is a doctor.

e |n first-order logic:
Doctor(mother(mp))

e Guarded:

if dmp() then
if dmother(mp) then Doctor(mother(mp)) else false fi
else false fi.
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© Guarded Partial Function Logic

Guarding is not easy!
¢ Consider the following example:
My partner’s mother is a doctor.

e |n first-order logic:
Doctor(mother(mp))

e Guarded:

if 0,,,() then
if dmother(117p) then Doctor(mother(mp)) else false fi
else false fi.
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© Guarded Partial Function Logic

Guarding is not easy!
¢ Consider the following example:
My partner’s mother is a doctor.

e |n first-order logic:
Doctor(mother(mp))

e Guarded:

if 0,,,() then
if Omother(mp) then Doctor(mother(mp)) else false fi

else false fi.
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© Guarded Partial Function Logic — Conveniences

Conjunctive and implicative guards:

b N = if & then o else false fi
¢ = 1 = if ¢ then 1 else true fi

Dorde Markovi¢ (KU Leuven) Ambiguities in Knowledge Representation

TTU, October 21, 2024



© Guarded Partial Function Logic — Conveniences

Conjunctive and implicative guards:

qbﬁw = if ¢ then v else false fi
¢ = ¥ =if ¢ then v else true fi

Example:
Smp () K S mother (mp) K Doctor(mother(mp))
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© Guarded Partial Function Logic — Conveniences

Conjunctive and implicative guards:

qﬁﬁw = if ¢ then v else false fi
¢ = ¢ = if ¢ then ¥ else true fi

Implicit guards (annotations):

[[Doctor(mother(mp))[] = 6mp() A Smother (mp) A Doctor(mother(mp))
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© Guarded Partial Function Logic — Conveniences

Conjunctive and implicative guards:

qﬁﬁw = if ¢ then v else false fi
¢ = ¢ = if ¢ then ¥ else true fi

Implicit guards (annotations):

[[Doctor(mother(mp))[] = 6mp() A Smother (mp) A Doctor(mother(mp))

({QoF = wife(KoF))) = 6oor () A Skor (VA e (KoF) = QoF = wife(KoF)
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© Guarded Partial Function Logic — Conveniences

Term guards: N
A(mother(mp)) = 0,,,() NOmother(1p)
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© Guarded Partial Function Logic — Conveniences

Term guards: N
A(mother(mp)) = 0,,,() NOmother(1p)

Example:
A(mother( mp))ﬁ Doctor(mother(mp)).
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© Guarded Partial Function Logic — Conveniences

Term guards: N
A(mother(mp)) = 0,,,() NOmother(1p)

Example:
A(mother( mp))ﬁ Doctor(mother(mp)).

Formally defined as:

A(F(s1, .. ..50) = A(s))A ... NA(sp) N oe(st,- - -, Sn)

Dorde Markovi¢ (KU Leuven)

Ambiguities in Knowledge Representation

TTU, October 21, 2024



© Guarded Partial Function Logic - Main results

e \We use strong Kleene three-valued semantics.

Towards Systematic Treatment of Partial Functions in Knowledge Representation. Djordje Markovic, Maurice
Bruynooghe, Marc Denecker. Logics in Artificial Intelligence JELIA 2023
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e \We use strong Kleene three-valued semantics.

e We define well-guarded formulae.
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© Guarded Partial Function Logic - Main results

e \We use strong Kleene three-valued semantics.
e We define well-guarded formulae.

e All convenient guards are defined in terms of conditional guards.
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© Guarded Partial Function Logic - Main results

e \We use strong Kleene three-valued semantics.

We define well-guarded formulae.

All convenient guards are defined in terms of conditional guards.

Theorem 1 - Every well-guarded formula is well-defined (i.e., true or false in all
structures).

Towards Systematic Treatment of Partial Functions in Knowledge Representation. Djordje Markovic, Maurice
Bruynooghe, Marc Denecker. Logics in Artificial Intelligence JELIA 2023
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© Guarded Partial Function Logic - Main results

e \We use strong Kleene three-valued semantics.
e We define well-guarded formulae.
e All convenient guards are defined in terms of conditional guards.

® Theorem 1 - Every well-guarded formula is well-defined (i.e., true or false in all
structures).

® Theorem 2 - Complexity of deciding well-guardedness is linear relative to the size of
formula.

Towards Systematic Treatment of Partial Functions in Knowledge Representation. Djordje Markovic, Maurice
Bruynooghe, Marc Denecker. Logics in Artificial Intelligence JELIA 2023
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© Guarded Partial Function Logic - Under revision

Current research (under revision):

® \We extend the notion of guards to the theory (i.e., set of logical sentences).

Smp()-
5mother(mp)~
Doctor(mother(mp)).

A Prudent Logic of Partial Functions. Djordje Markovic, Robbe Van den Eede, Marc Denecker. Under
consideration for publication in the Annals of Mathematics and Artificial Intelligence.
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© Guarded Partial Function Logic - Under revision

Current research (under revision):

® \We extend the notion of guards to the theory (i.e., set of logical sentences).

Smp()-
5mother(mp) :
Doctor(mother(mp)).

e Support for recursive definitions of functions.

{ Vx,y : spouse(x) =y < Married(x, y) }

A Prudent Logic of Partial Functions. Djordje Markovic, Robbe Van den Eede, Marc Denecker. Under
consideration for publication in the Annals of Mathematics and Artificial Intelligence.
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? Ambiguities in Knowledge Representation

Partial functi
Decision modeling

Order-sorted Intensional logic
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@ Decision modeling




© Quick poll

How many of you are familiar with/have heard of (raise your hand {):
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* Rule-based decision modeling? ¥
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© Quick poll

How many of you are familiar with/have heard of :

® Rule-based decision modeling?

e DMN, OpenRules?
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© Quick poll

How many of you are familiar with/have heard of :

® Rule-based decision modeling?
e DMN, OpenRules?

* Epistemic logic? ¥
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@ Decision modeling — Introduction

Rule-based decision modeling with Decision Model and Notation (DMN):

Categorizing clients

U | Client type | On deposit | Estimaded Net Worth | Client category

1 | Business < 100000 High High value Business

2 | Business > 100000 | not(High) High value Business

3 | Business < 100000 | not(High) Business Standard

4 | Private > 20000 High Personal Wealth Management
5 | Private > 20000 not(High) Personal Wealth Management
6 | Private < 20000 - Personal standard

Wikipedia example. https://commons.wikimedia.org/wiki/File:DMN_client_category_table.jpg
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@ Decision modeling — Example

* Greeting a Customer with Unknown Data'

L Challenge appeared in 2016 as part of the Decision Management Community
https://dmcommunity.org/challenge/challenge-aug-2016/
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@ Decision modeling — Example

* Greeting a Customer with Unknown Data'

e Context: Composing newsletters for a company.

L Challenge appeared in 2016 as part of the Decision Management Community
https://dmcommunity.org/challenge/challenge-aug-2016/
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@ Decision modeling — Example

* Greeting a Customer with Unknown Data®
e Context: Composing newsletters for a company.

® For example:
Good morning, Ms. Smith,
We are happy to announce our special offer for the new GPU card.

L Challenge appeared in 2016 as part of the Decision Management Community
https://dmcommunity.org/challenge/challenge-aug-2016/
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Greeting a Customer with Unknown Datal

Context: Composing newsletters for a company.

For example:
Good morning, Ms. Smith,
We are happy to announce our special offer for the new GPU card.

W, Greeting
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@ Decision modeling — Example

Greeting a Customer with Unknown Datal

Context: Composing newsletters for a company.

For example:
Good morning, Ms. Smith,
We are happy to announce our special offer for the new GPU card.

W, Greeting

O Salutation

! Challenge appeared in 2016 as part of the Decision Management Community
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@ Decision modeling — Example

Greeting a Customer with Unknown Datal

Context: Composing newsletters for a company.

For example:
Good morning, Ms. Smith,
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@ Decision modeling — Greeting a Customer with Unknown

S Input parameters:
® Time at the user’s location [00 — 23]

® Summer/Winter time at the user’s location [Summer, Winter]

& Output parameters:
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@ Decision modeling — Greeting a Customer with Unknown

S Input parameters:
® Time at the user’s location [00 — 23]

® Summer/Winter time at the user’s location [Summer, Winter]

& Output parameters:
® Greeting [Good Morning, G. Afternoon, G. Evening, G. Night]
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@ Decision modeling — Greeting a Customer with Unknown

S Input parameters:

e Time at the user’s location [00 — 23]
® Summer/Winter time at the user’s location [Summer, Winter]
® The gender of the user [Male, Female]
® The marital status of the user [Married, Single]

5 Output parameters:
® Greeting [Good Morning, G. Afternoon, G. Evening, G. Night]
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@ Decision modeling — Greeting a Customer with Unknown

S Input parameters:

e Time at the user’s location [00 — 23]
® Summer/Winter time at the user’s location [Summer, Winter]
® The gender of the user [Male, Female]
® The marital status of the user [Married, Single]

5 Output parameters:
® Greeting [Good Morning, G. Afternoon, G. Evening, G. Night]
¢ Salutation [Mr, Ms, Mrs|
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@ Decision modeling — Greeting a Customer with Unknown

S Input parameters:

e Time at the user’s location [00 — 23]
® Summer/Winter time at the user’s location [Summer, Winter]
® The gender of the user [Male, Female]
® The marital status of the user [Married, Single]
o [GA, GB, GC, GD]
5 Output parameters:
® Greeting [Good Morning, G. Afternoon, G. Evening, G. Night]
¢ Salutation [Mr, Ms, Mrs|
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@ Decision modeling — Greeting a Customer with Unknown

S Input parameters:

e Time at the user’s location [00 — 23]
® Summer/Winter time at the user’s location [Summer, Winter]
® The gender of the user [Male, Female]
® The marital status of the user [Married, Single]
o [GA, GB, GC, GD]
5 Output parameters:
® Greeting [Good Morning, G. Afternoon, G. Evening, G. Night]
¢ Salutation [Mr, Ms, Mrs|
: [M1, M2, M3, M4]
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@ Decision modeling — Greeting a Customer with Unknown Data

£ Decision rules:

Deciding the ‘W, Greeting:
® “Good Morning" Summer [00..11
® “Good Afternoon” Summer [11..17
® “Good Evening" Summer [17..22
® “Good Night" Summer [22..24

or Winter [00..12)
or Winter [12..16)
or Winter [16..21)
or Winter [21..24)

~— — N
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@ Decision modeling — Greeting a Customer with Unknown Data

0% Decision rules:

Deciding the W, Greeting:

® “Good Morning" Summer [00..11) or Winter [00..12)
® “Good Afternoon” Summer [11..17) or Winter [12..16)
® “Good Evening" Summer [17..22) or Winter [16..21)
® “Good Night" Summer [22..24) or Winter [21..24)
® Same greeting If the time is in the range such that

Summer/Winter time is irrelevant
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@ Decision modeling — Greeting a Customer with Unknown Data

0% Decision rules:

Deciding the W, Greeting:

® “Good Morning" Summer [00..11) or Winter [00..12)
® “Good Afternoon” Summer [11..17) or Winter [12..16)
® “Good Evening" Summer [17..22) or Winter [16..21)
® “Good Night" Summer [22..24) or Winter [21..24)
® Same greeting If the time is in the range such that

Summer/Winter time is irrelevant
® “Hello” If no sufficient information
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@ Decision modeling — Greeting a Customer with Unknown Data

0% Decision rules:

Deciding the & Salutation:

o “Mr" Male
o “Ms" Single, Female
e “Mrs" Married, Female
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@ Decision modeling — Greeting a Customer with Unknown Data

0% Decision rules:

Deciding the & Salutation:

o “Mr" Male
o “Ms" Single, Female
® “Mrs" Married, Female
o “Ms" If gender is known to be Female and

marital status is unknown
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@ Decision modeling — Greeting a Customer with Unknown Data

0% Decision rules:

Deciding the & Salutation:

o “Mr" Male
o “Ms" Single, Female
® “Mrs" Married, Female
o “Ms" If gender is known to be Female and

marital status is unknown

e “Customer” If the gender is unknown
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@ Decision modeling — Greeting a Customer with Unknown Data

£ Decision rules:
Deciding the
® Msgl (performance comparison) — Exact GPU card of the customer is known.

® Msg2 (form for performance comparison) — It is known that the customer has a GPU card,
but it is not known which one.
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@ Decision modeling — Greeting a Customer with Unknown Data

£ Decision rules:
Deciding the
® Msgl (performance comparison) — Exact GPU card of the customer is known.

® Msg2 (form for performance comparison) — It is known that the customer has a GPU card,
but it is not known which one.

* Msg3 (discount offer) — It is known that the customer does not have a GPU card.
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@ Decision modeling — Greeting a Customer with Unknown Data

o ..
02 Decision rules:

Deciding the
® Msgl (performance comparison) — Exact GPU card of the customer is known.

® Msg2 (form for performance comparison) — It is known that the customer has a GPU card,
but it is not known which one.

* Msg3 (discount offer) — It is known that the customer does not have a GPU card.

® Msg4 (send a poll) — It is not known whether the customer has GPU.
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@ Decision modeling — Greeting a Customer with Unknown Data

Problems:

® Missing/Unknown data:

® Non-existing values:
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@ Decision modeling — Greeting a Customer with Unknown Data

Problems:

® Missing/Unknown data:
® Some decisions can be made even with incomplete information.

® Non-existing values:
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@ Decision modeling — Greeting a Customer with Unknown Data

Problems:

® Missing/Unknown data:
® Some decisions can be made even with incomplete information.

® E.g., Salutation is “Mr" regardless of marital status (if gender is male).

® Non-existing values:
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@ Decision modeling — Greeting a Customer with Unknown Data

Problems:

® Missing/Unknown data:

® Some decisions can be made even with incomplete information.
® E.g., Salutation is “Mr" regardless of marital status (if gender is male).

® E.g., it suffices to know that the time is between 00 and 11 (if Summer time) to decide that
Greeting “Good morning” should be used.

® Non-existing values:
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@ Decision modeling — Greeting a Customer with Unknown Data

Problems:

® Missing/Unknown data:

® Some decisions can be made even with incomplete information.
® E.g., Salutation is “Mr" regardless of marital status (if gender is male).

® E.g., it suffices to know that the time is between 00 and 11 (if Summer time) to decide that
Greeting “Good morning” should be used.

® Non-existing values:
® Some variables do not have a value.
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@ Decision modeling — Greeting a Customer with Unknown Data

Problems:

® Missing/Unknown data:
® Some decisions can be made even with incomplete information.

® E.g., Salutation is “Mr" regardless of marital status (if gender is male).

® E.g., it suffices to know that the time is between 00 and 11 (if Summer time) to decide that
Greeting “Good morning” should be used.

® Non-existing values:
® Some variables do not have a value.

® A PC does not have to have a
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@ Decision modeling — Greeting a Customer with Unknown Data

Problems:

® Missing/Unknown data:
® Some decisions can be made even with incomplete information.

® E.g., Salutation is “Mr" regardless of marital status (if gender is male).
® E.g., it suffices to know that the time is between 00 and 11 (if Summer time) to decide that
Greeting “Good morning” should be used.
® Non-existing values:
® Some variables do not have a value.
® A PC does not have to have a

® This is different from existing but unknown values.

TTU, October 21, 2024

Dorde Markovi¢ (KU Leuven) Ambiguities in Knowledge Representation



@ Decision modeling — Greeting a Customer with Unknown Data

Problems:

® Missing/Unknown data:
® Some decisions can be made even with incomplete information.

® E.g., Salutation is “Mr" regardless of marital status (if gender is male).

® E.g., it suffices to know that the time is between 00 and 11 (if Summer time) to decide that
Greeting “Good morning” should be used.

® Non-existing values:
® Some variables do not have a value.
® A PC does not have to have a
® This is different from existing but unknown values.

Existing rule-based decision modeling languages do not entirely support unknown and
non-existing values leading to semantic mismatch.
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@ Decision modeling — Greeting a Customer with Unknown Data

Attempt to model salutation in pure DMN:

Salutation

U | Gender | M Status | Salutation
1 | Male - Mr

2 | Female | Married Mrs

3 | Female | Single Ms

Dorde Markovi¢ (KU Leuven)
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@ Decision modeling — Greeting a Customer with Unknown Data

Attempt to model salutation in pure DMN:

Salutation

U | Gender | M Status | Salutation
1 | Male - Mr

2 | Female | Married Mrs

3 | Female | Single Ms

Is this rule expressing objective or epistemic relation?
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@ Decision modeling — epistemic DMN

Epistemic DMN (idea):

e Conditions of the rules are interpreted epistemically.

An epistemic logic for modeling decisions in the context of incomplete knowledge. Djordje Markovic, Simon
Vandevelde, Linde Vanbesien, Joost Vennekens, Marc Denecker. SAC'24: Proceedings of the 39th ACM/SIGAPP
Symposium on Applied Computing 2024
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@ Decision modeling — epistemic DMN

Epistemic DMN (idea):
e Conditions of the rules are interpreted epistemically.

¢ Constants can be partial (i.e., non-denoting).

An epistemic logic for modeling decisions in the context of incomplete knowledge. Djordje Markovic, Simon
Vandevelde, Linde Vanbesien, Joost Vennekens, Marc Denecker. SAC'24: Proceedings of the 39th ACM/SIGAPP
Symposium on Applied Computing 2024
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@ Decision modeling — epistemic DMN

Epistemic DMN (idea):
e Conditions of the rules are interpreted epistemically.
¢ Constants can be partial (i.e., non-denoting).

® Observation: There is a hierarchy in decision making.

An epistemic logic for modeling decisions in the context of incomplete knowledge. Djordje Markovic, Simon
Vandevelde, Linde Vanbesien, Joost Vennekens, Marc Denecker. SAC'24: Proceedings of the 39th ACM/SIGAPP
Symposium on Applied Computing 2024
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@ Decision modeling — Ordered Epistemic Logic

Ordered Epistemic Logic:

Ordered Epistemic Logic: Semantics, Complexity and Applications. Hanne Vlaeminck, Joost Vennekens,
Maurice Bruynooghe, Marc Denecker. KR (2012): Proceedings of the Thirteenth International Conference on Principles

of Knowledge Representation and Reasoning.
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@ Decision modeling — Solving Greeting a Customer with eDMN

Modeling the ontology:

Types
Name DataType Possible Values
time Int [0..23]
sw__time String Summer, Winter
Good Morning, Good Afternoon,
greeting String Good Evening, Good Night, Hello
gender String Female, Male
marital status String Single, Married
salutation String Mr, Mrs, Ms, Customer
gpu String GA, GB, GC, GD
message String Msgl, Msg2, Msg3, Msg4

Dorde Markovi¢ (KU Leuven)

Ambiguities in Knowledge Representation TTU, October 21, 2024



@ Decision modeling — Solving Greeting a Customer with eDMN

Modeling the ontology:
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@ Decision modeling — Solving Greeting a Customer with eDMN

Modeling the ontology:

Types
Name DataType Possible Values
time Int [0..23]
sw__time String Summer, Winter
Good Morning, Good Afternoon,
greeting String Good Evening, Good Night, Hello
gender String Female, Male
marital status String Single, Married
salutation String Mr, Mrs, Ms, Customer
gpu String GA, GB, GC, GD
message String Msgl, Msg2, Msg3, Msg4
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@ Decision modeling — Solving Greeting a Customer with eDMN

Modeling the ontology:

Dorde Markovi¢ (KU Leuven)

Constants
Name DataType
Time time
SW Time sw__time
Greeting greeting
Gender gender
M Status marital status
Salutation salutation
Message message
Partial GPU gpu
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@ Decision modeling — Solving Greeting a Customer with eDMN

Modeling the ontology:
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@ Decision modeling — Solving Greeting a Customer with eDMN

Modeling the ontology:

Dorde Markovi¢ (KU Leuven)

Constants
Name DataType
Time time
SW Time sw__time
Greeting greeting
Gender gender
M Status marital status
Salutation salutation
Message message
Partial GPU gpu

Ambiguities in Knowledge Representation

TTU, October 21, 2024



@ Decision modeling — Solving Greeting a Customer with eDMN

Modeling the ", Greeting decision:

Dorde Markovi¢ (KU Leuven)

Greeting
F | Time SW Time | Greeting
1] ]0..11) | Summer | Good Morning
2 | [11..17) | Summer | Good Afternoon
3| [17..22) | Summer | Good Evening
4 | [22..24) | Summer | Good Night
5| [0..12) | Winter Good Morning
6 | [12..16) | Winter Good Afternoon
7 | [16..21) | Winter Good Evening
8 | [21..24) | Winter Good Night
9 {[0.11) | oK Good Morning
10 | [12..16) | o|K Good Afternoon
11 | [17.21) | -|K Good Evening
12 | [22..24) | -|K Good Night
13 | - - Hello
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@ Decision modeling — Solving Greeting a Customer with eDMN

Modeling the ", Greeting decision:

Dorde Markovi¢ (KU Leuven)

Greeting
F | Time SW Time | Greeting
1 [0..11) | Summer | Good Morning
2| [11..17) | Summer | Good Afternoon
3| [17..22) | Summer | Good Evening
4 | [22.24) | Summer | Good Night
5| [0..12) | Winter Good Morning
6 | [12..16) | Winter Good Afternoon
7 | [16..21) | Winter Good Evening
8 | [21..24) | Winter Good Night
9 {[0.11) | oK Good Morning
10 | [12..16) | o|K Good Afternoon
11 | [17.21) | -|K Good Evening
12 | [22..24) | -|K Good Night
13 | - - Hello
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@ Decision modeling — Solving Greeting a Customer with eDMN

Modeling the ", Greeting decision:

Dorde Markovi¢ (KU Leuven)

Greeting
F | Time SW Time | Greeting
1] ]0..11) | Summer | Good Morning
2 | [11..17) | Summer | Good Afternoon
3| [17..22) | Summer | Good Evening
4 | [22..24) | Summer | Good Night
51 [0..12) Winter Good Morning
6 | [12..16) | Winter Good Afternoon
7 | [16..21) | Winter Good Evening
8 | [21.24) | Winter | Good Night
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11 | [17.21) | -|K Good Evening
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13 | - - Hello
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@ Decision modeling — Solving Greeting a Customer with eDMN

Modeling the O Salutation decision:

Dorde Markovi¢ (KU Leuven)

Salutation

U | Gender | M Status | Salutation
1 | Male - Mr

2 | Female | Married Mrs

3 | Female | Single Ms

4 | Female | -|K]| Ms

5| —|K] - Customer
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@ Decision modeling — Solving Greeting a Customer with eDMN

Modeling the

Dorde Markovi¢ (KU Leuven)

decision:
Message
U | D GPU | GPU | Message
1 | Def K| Msgl
2 | Def K| | Msg2
3 | Undef - Msg3
4 | —|K]| - Msg4
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@ Decision modeling — Solving Greeting a Customer with eDMN

Modeling the epistemic state:

K. Time K. SW K. Gender
K | Time K | SW Time K | Gender
1] [8..10] 1 | Summer 1 | Male
K.D_GPU K. GPU
K| D_ GPU K | GPU
1 | Def 1| GAGB
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Modeling the epistemic state:

K. Time K. SW K. Gender
K | Time K | SW Time K | Gender
1] [8..10] 1 | Summer 1 | Male
K.D_GPU K. GPU
K| D_ GPU K | GPU
1 | Def 1| GAGB

TTU, October 21, 2024

Dorde Markovi¢ (KU Leuven) Ambiguities in Knowledge Representation



@ Decision modeling — Solving Greeting a Customer with eDMN

Implementation based on the IDP-Z3 KB system.

https://www.idp-z3.be/ https://gitlab.com/krr/idp-z3-oel
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https://www.idp-z3.be/
https://gitlab.com/krr/idp-z3-oel

? Ambiguities in Knowledge Representation

Portial functi
N ol

Order-sorted Intensional logic
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W Order-sorted Intensional logic

e Consider the natural language sentence:
An animal produces sound iff it produces a sound characteristic for its species.
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W Order-sorted Intensional logic

e Consider the natural language sentence:
An animal produces sound iff it produces a
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W Order-sorted Intensional logic

e Consider the natural language sentence:
An animal produces sound iff it produces a

® What we mean:

An animal produces sound iff

that animal is a dog and it ,

or that animal is a cat and it .
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W Order-sorted Intensional logic - Roadmap

7 1. First-order logic
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W Order-sorted Intensional logic - Roadmap

7 1. First-order logic @
2. Many-sorted Iogic G 4. Intensional logic ¢

at3 3. Order-sorted logic @

© 5. Order-sorted intensional logic
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W Order-sorted Intensional logic - Roadmap

'V 1. First-order logic

2. Many-sorted logic &
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W Order-sorted Intensional logic — First-order and many-sorted logic

® Example:

“There is a Cat eating.”
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W Order-sorted Intensional logic — First-order and many-sorted logic

e Example:

“There is a Cat eating.”

* First-order logic is not typed! Each object is part of the “Universe”.

dc @ Cat(c) A Eats(c).
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e Example:

“There is a Cat eating.”

* First-order logic is not typed! Each object is part of the “Universe”.
dc @ Cat(c) A Eats(c).

* In many-sorted logic, we can introduce sort/type Cat.
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W Order-sorted Intensional logic — First-order and many-sorted logic

Example:
“There is a Cat eating.”

First-order logic is not typed! Each object is part of the “Universe”.
dc @ Cat(c) A Eats(c).

* In many-sorted logic, we can introduce sort/type Cat.

Then we can declare eats predicate as: Eats: (Cat) — B
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W Order-sorted Intensional logic — First-order and many-sorted logic

Example:
“There is a Cat eating.”

First-order logic is not typed! Each object is part of the “Universe”.
dc @ Cat(c) A Eats(c).

* In many-sorted logic, we can introduce sort/type Cat.

Then we can declare eats predicate as: Eats: (Cat) — B

Finally, we express the example statement as:

Jc[Cat] : Eats(c).
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W Order-sorted Intensional logic — First-order and many-sorted logic

® Any problems with J¢[Cat] : Eats(c)?

Dorde Markovi¢ (KU Leuven) Ambiguities in Knowledge Representation TTU, October 21, 2024



W Order-sorted Intensional logic — First-order and many-sorted logic

® Any problems with J¢[Cat] : Eats(c)?

® How to express that there is a Dog eating?

d[Dog| : Eats(d)
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W Order-sorted Intensional logic — Roadmap

Jde @ Cat(c) A Eats(c).

dc[Cat| : Eats(c). @

%3 Order-sorted logic &
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W Order-sorted Intensional logic — Order-sorted logic

e Hierarchy of types (<: subtype relation):

Dog <: Animal Cat <: Animal
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W Order-sorted Intensional logic — Order-sorted logic

e Hierarchy of types (<: subtype relation):
Dog <: Animal Cat <: Animal

® Predicative form:
Dog : (Animal) — B
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W Order-sorted Intensional logic

® Back to the eating example:
Dog <: Animal Cat <: Animal

Eats : (Animal) —» B
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W Order-sorted Intensional logic

® Back to the eating example:
Dog <: Animal Cat <: Animal

Eats : (Animal) —» B

® “There is an Animal eating” is expressed as:

alAnimal] : Eats(a).
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W Order-sorted Intensional logic

® Back to the eating example:
Dog <: Animal Cat <: Animal

Eats : (Animal) —» B

® “There is an Animal eating” is expressed as:
alAnimal] : Eats(a).
e Both of the following statements are well-typed:

Jc[Cat] : Eats(c). 3d[Dog| : Eats(d)
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W Order-sorted Intensional logic — Order-sorted logic

® Any problems?
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W Order-sorted Intensional logic — Order-sorted logic

® Any problems?
® Given predicates:

Bark : (Dog) — B Meow : (Cat) — B
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W Order-sorted Intensional logic — Order-sorted logic

® Any problems?

® Given predicates:

Bark : (Dog) — B Meow : (Cat) — B

e Can we define the predicate:

ProducingSound(Animal) — B
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W Order-sorted Intensional logic — Order-sorted logic

® Yes we can!

Va[Animal| :ProducingSound(2a) <
(3d[Dog| - a =** d A Bark(d)) Vv (3c[Cat] : a =*2 ¢ A Meow(c)).
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W Order-sorted Intensional logic — Order-sorted logic

® Yes we can!

Va[Animal| :ProducingSound(2a) <
(3d[Dog| - a =** d A Bark(d)) Vv (3c[Cat] : a =*2 ¢ A Meow(c)).

® Can we do better?

Va[Animall :ProducingSound(a) <
(Dog(a) A Bark(a)) Vv (Cat(a) A Meow(a)).
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W Order-sorted Intensional logic — Order-sorted logic

o Let: S< T S:(I)—B a: T
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W Order-sorted Intensional logic — Order-sorted logic

* Let: S<:T S:(I)—B a: T

® Then: S(a) = ¢[a] and S(a) A ¢la] are well typed formulas!
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W Order-sorted Intensional logic — Order-sorted logic

o Let: S< T S:(I)—B a: T
® Then: S(a) = ¢[4] and S(a) Aol are well typed formulas!

® Abbreviated: {o(2))) and [[e(2)1 W
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W Order-sorted Intensional logic — Order-sorted logic

* Let: S<:T S:(I)—B a: T
¢ Then: S(a) = ¢[4] and S(a) A gl4] are well typed formulas!
® Abbreviated: {o(2))) and [le(2) KX

Example:

Va[Animall : ProducingSound(2) < (Dog(a) A Bark(2)) V (Cat(a) A Meow(a)).

Dorde Markovi¢ (KU Leuven) Ambiguities in Knowledge Representation TTU, October 21, 2024



W Order-sorted Intensional logic — Order-sorted logic

* Let: S<:T S:(I)—B a: T
Then: S(a) = ¢[4] and S(a) A gl4] are well typed formulas!
Abbreviated: {o(2))) and [le(2) KX

Example:

Va[Animal] : ProducingSound(a) < (Dog(a) A Bark(a)) V (Cat(a) A Meow(2)).

The compact version:

ValAnimal] : ProducingSound(a) < [[Bark(2)]] V [[Meow(2)]]-
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W Order-sorted Intensional logic — Order-sorted logic

® ValAnimal| : ProducingSound(a) < [[Bark(2)]] V [[Meow(2)]]-

An animal produces sound iff

that animal is a dog and it , or that animal is a cat and it -
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W Order-sorted Intensional logic — Order-sorted logic

® ValAnimal| : ProducingSound(a) < [[Bark(2)]] V [[Meow(2)]]-

An animal produces sound iff

that animal is a dog and it , or that animal is a cat and it -

® Recall that we want:

An animal produces sound iff it produces a
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W Order-sorted Intensional logic — Order-sorted logic

® ValAnimal| : ProducingSound(a) < [[Bark(2)]] V [[Meow(2)]]-

An animal produces sound iff

that animal is a dog and it , or that animal is a cat and it -

® Recall that we want:

An animal produces sound iff it produces a

® Here: is collection of concepts as , —
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W Order-sorted Intensional logic — Roadmap

dc @ Cat(c) A Meow(c).

Jc[Cat] : Meow(c).

G W 57 Intensional logic

JalAnimal] : ProducingSound(2).
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W Order-sorted Intensional logic — Intensional logic

® Extension vs Intension
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W Order-sorted Intensional logic — Intensional logic

e Extension vs Intension

e Example: Evening star and morning star are concepts.
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W Order-sorted Intensional logic — Intensional logic

e Extension vs Intension

e Example: Evening star and morning star are concepts.

® New type:
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W Order-sorted Intensional logic — Intensional logic

e Extension vs Intension

e Example: Evening star and morning star are concepts.
® New type:
e Elements of := {Animal, DAo;g, a?/t, Eavts, E.;rT(, Meow, ...}
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W Order-sorted Intensional logic — Intensional logic

e Extension vs Intension

e Example: Evening star and morning star are concepts.
® New type:
e Elements of := {Animal, DAo/g, aa/t, E?ts, Bark, Meow, . ..}

e

* New operators: ‘(Animal) = Animal and $(Eats)(d) = Eats(d)

Dorde Markovi¢ (KU Leuven) Ambiguities in Knowledge Representation TTU, October 21, 2024



W Order-sorted Intensional logic — Intensional logic

e Extension vs Intension

e Example: Evening star and morning star are concepts.

® New type:

¢ Elements of = {A/ni\m/a/, Dog, Cat, Eats, ézﬁ(, Meow, ...}

* New operators: ‘(Animal) = Animal and $(Eats)(d) = Eats(d)

e Example:
Sound( ) — B

Sound('(Bark)) A Sound(‘(Meow)).
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W Order-sorted Intensional logic — Intensional logic

® Back to the ProducingSound:

Va[Animal] : ProducingSound(2) < (Dog(a) A Bark(2)) V (Cat(2a) A Meow(2)).
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W Order-sorted Intensional logic — Intensional logic

® Back to the ProducingSound:
Va[Animal] : ProducingSound(2) < (Dog(a) A Bark(2)) V (Cat(2a) A Meow(2)).
e Can we do better with intentional logic?

ValAnimal] : ProducingSound(a) < 3 : Sound(s) A $(5)(a).
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W Order-sorted Intensional logic — Intensional logic

® Back to the ProducingSound:
Va[Animal] : ProducingSound(2) < (Dog(a) A Bark(2)) V (Cat(2a) A Meow(2)).
e Can we do better with intentional logic?
ValAnimal] : ProducingSound(a) < 3 : Sound(s) A $(5)(a).
e This is not good!

Va[Animal] : ProducingSound(a) < Bark(a) vV Meow(a).
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W Order-sorted Intensional logic — Intensional logic

Back to the ProducingSound:

Va[Animal] : ProducingSound(2) < (Dog(a) A Bark(2)) V (Cat(2a) A Meow(2)).

Can we do better with intentional logic?

ValAnimal] : ProducingSound(a) < 3 : Sound(s) A $(5)(a).

This is not good!

Va[Animal] : ProducingSound(a) < Bark(a) vV Meow(a).

Can this be made correct in intensional logic? Yes! ‘&,
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W Order-sorted Intensional logic — Roadmap

dc @ Cat(c) A Meow(c).

Jc[Cat] : Meow(c). a + Sound( )— B

JalAnimal] : ProducingSound(2).

% © Order-sorted intensional logic
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W Order-sorted Intensional logic

® We defined ProducingSound as:

Va[lAnimal| : ProducingSound(a) < (Dog(a) A Bark(2)) Vv (Cat(a) A Meow(2)).
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W Order-sorted Intensional logic

® We defined ProducingSound as:
Va[Animall : ProducingSound(2) < (Dog(a) A Bark(2)) V (Cat(2) A Meow(2)).
® We abbreviate it with:

Va[Animal] : ProducingSound(2) < [[Bark(2)]] V [[Meow(2)]]
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W Order-sorted Intensional logic

® We defined ProducingSound as:
Va[Animall : ProducingSound(2) < (Dog(a) A Bark(2)) V (Cat(2) A Meow(2)).
® We abbreviate it with:
Va[Animal] : ProducingSound(2) < [[Bark(2)]] V [[Meow(2)]]

® Introduce new type:
< := {Bark, Meow}
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W Order-sorted Intensional logic

We defined ProducingSound as:

Va[Animall : ProducingSound(2) < (Dog(a) A Bark(2)) V (Cat(2) A Meow(2)).

We abbreviate it with:

Va[Animal] : ProducingSound(2) < [[Bark(2)]] V [[Meow(2)]]

Introduce new type:
< := {Bark, Meow}

Then ProducingSound can be defined as:

Va[Animal] : ProducingSound(2) < 3 (8 (2) (@)
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W Order-sorted Intensional logic

e Natural language:

An animal

® Order-sorted intensional logic:

Va[Animal] :
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W Order-sorted Intensional logic

e Natural language:

An animal produces sound

® Order-sorted intensional logic:

Va[Animal] : ProducingSound(2)
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W Order-sorted Intensional logic

e Natural language:

An animal produces sound iff it produces a

® Order-sorted intensional logic:

Va[Animall : ProducingSound(2) < 3
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W Order-sorted Intensional logic

e Natural language:

An animal produces sound iff it produces a

® Order-sorted intensional logic:

Va[Animall : ProducingSound(2) < 3
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W Order-sorted Intensional logic

e Another example:

Fore each there is an animal producing sound
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W Order-sorted Intensional logic

e Another example:

Fore each there is an animal producing sound

® In order-sorted intensional logic:

v : Ja[Animal] - [[$(s)(2)]]-
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W Order-sorted Intensional logic

e Another example:

Fore each there is an animal producing sound

® In order-sorted intensional logic:
v : Ja[Animal] - [[$(s)(2)]]-
e Or grounded:

(FalAnimal] : Dog(a) A Barks(2)) A (3alAnimal] : Cat(a) A Meow(2)).
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W Order-sorted Intensional logic — Conclusion

e Expressing subtyping polymorphism is a challenge in order-sorted logic.
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e Expressing subtyping polymorphism is a challenge in order-sorted logic.

® Intensional logic is required.
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W Order-sorted Intensional logic — Conclusion

e Expressing subtyping polymorphism is a challenge in order-sorted logic.
® Intensional logic is required.

¢ Implicit guarding makes it compact and elegant.
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W Order-sorted Intensional logic — Conclusion

Expressing subtyping polymorphism is a challenge in order-sorted logic.

Intensional logic is required.

¢ Implicit guarding makes it compact and elegant.

Complex well-typing relation (future work).
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3 Summary

We covered:

® Basics of the KR paradigm.
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3 Summary

We covered:

e Basics of the KR paradigm.

e First-order logic with inductive definitions as a modeling language (with example).
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3 Summary

We covered:

e Basics of the KR paradigm.
e First-order logic with inductive definitions as a modeling language (with example).

® Problems with partial functions.
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3 Summary

We covered:

e Basics of the KR paradigm.

e First-order logic with inductive definitions as a modeling language (with example).

® Problems with partial functions.

¢ Role of epistemic logic in rule-based decision modeling languages.
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3 Summary

We covered:

e Basics of the KR paradigm.

First-order logic with inductive definitions as a modeling language (with example).

Problems with partial functions.

Role of epistemic logic in rule-based decision modeling languages.

® Expressive properties of order-sorted intensional logic.
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3 Summary

In Knowledge Representation it is very important to get the models right!
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3 Summary

In Knowledge Representation it is very important to get the models right!

Term “model” is overloaded: what | mean:
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3 Summary

In Knowledge Representation it is very important to get the models right!

Term “model” is overloaded: what | mean:

@ To make the formalization (or modeling) of the particular domain correspond as much as
possible to the informal understanding of that domain.
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3 Summary

In Knowledge Representation it is very important to get the models right!

Term “model” is overloaded; what | mean:

@ To make the formalization (or modeling) of the particular domain correspond as much as
possible to the informal understanding of that domain.

@® To ensure that the formalization yields correct models (i,e., possible worlds of the theory
according to the model semantics are isomorphic to the possible state of affairs of the real
world.)
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[3 Thank you for your attention
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